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CVODES: An ODE solver with sensitivity analysis

capabilities

RADU SERBAN and ALAN C. HINDMARSH

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

CVODES, which is part of the SUNDIALS software suite, is a stiff and nonstiff ordinary differential

equation initial value problem solver with sensitivity analysis capabilities. CVODES is written in

a data-independent manner, with a highly modular structure to allow incorporation of different

preconditioning and/or linear solver methods. It shares with the other SUNDIALS solvers several

common modules, most notably the generic kernel of vector operations and a set of generic linear

solvers and preconditioners.

CVODES solves the IVP by one of two methods – backward differentiation formula or Adams-
Moulton – both implemented in a variable-step, variable-order form. The forward sensitivity

module in CVODES implements the simultaneous corrector method, as well as two flavors of

staggered corrector methods. Its adjoint sensitivity module provides a combination of checkpoint-

ing and cubic Hermite interpolation for the efficient generation of the forward solution during the
adjoint system integration.
We describe the current capabilities of CVODES, its design principles, and connection to the

SUNDIALS suite, and the user interface. Finally, we mention current and future development

efforts for CVODES, particularly in the direction of automatic generation of the sensitivity right-
hand sides using automatic differentiation and/or complex-step techniques.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and anal-
ysis; G.1.7 [Numerical Analysis]: Ordinary Differential Equations—Initial value problems;Mul-
tistep methods; Stiff equations

General Terms: Algorithms, Design

Additional Key Words and Phrases: ODEs, Forward Sensitivity Analysis, Adjoint Sensitivity
Analysis

1. INTRODUCTION

Fortran solvers for ODE initial value problems (IVPs) are widespread and heavily
used. Two solvers that have been written at LLNL in the past are VODE [Brown
et al. 1989] and VODPK [Byrne 1992]. VODE is a general purpose solver that
includes methods for stiff and nonstiff systems, and in the stiff case uses direct
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2 · R. Serban and A.C. Hindmarsh

methods (full or banded) for the solution of the linear systems that arise at each
implicit step. Externally, VODE is very similar to the well known solver LSODE
[Radhakrishnan and Hindmarsh 1994]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established
methods for stiff integration, nonlinear iteration, and Krylov (linear) iteration with
a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [Brown and Hindmarsh 1989]. The capabili-
ties of both VODE and VODPK have been combined in the C-language packages
CVODE [Cohen and Hindmarsh 1996] and PVODE [Byrne and Hindmarsh 1999],
later merged under the suite SUNDIALS [Hindmarsh et al. 2003] into one solver,
CVODE, which runs on both serial and parallel computers. Besides CVODE, the
other two basic solvers in SUNDIALS are IDA, a solver for differential-algebraic
equation (DAE) systems, and KINSOL, a Newton-Krylov (GMRES) solver for non-
linear algebraic systems.

In recent years, research and development related to the SUNDIALS solvers has
focused on sensitivity analysis to address questions related to unknown parameters
in the mathematical models under consideration. Essentially, sensitivity analysis
quantifies the relationship between changes in model parameters and changes in
model outputs. Such information is crucial for design optimization, parameter es-
timation, optimal control, data assimilation, process sensitivity, and experimental
design. There are two main approaches to sensitivity analysis. Forward sensitivity

analysis has been proven to be very efficient for problems in which the sensitiv-
ities of a (potentially) very large number of quantities with respect to relatively
few parameters are needed. However, for problems where the number of uncer-
tain parameters is large, the forward sensitivity method becomes computationally
intractable. The adjoint sensitivity method, also called reverse method, is advan-
tageous in the complementary situation where the sensitivities of a few quantities
with respect to a large number of parameters are needed.

SUNDIALS is currently being expanded to include sensitivity-capable variants of
all its basic solvers. The first one, CVODES, released in July 2002, is written with a
functionality that is a superset of that of CVODE. Sensitivity analysis capabilities,
both forward and adjoint, have been added to the main integrator. Enabling for-
ward sensititivity computations in CVODES will result in the code integrating the
so-called sensitivity equations simultaneously with the original IVP, yielding both
the solution and its sensitivity with respect to parameters in the model. Adjoint
sensitivity analysis involves integration of the original IVP forward in time followed
by the integration of the so-called adjoint equations backwards in time. CVODES
provides the infrastructure needed to integrate any final-condition ODE dependent
on the solution of the original IVP (not only the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations
module (NVECTOR) across the SUNDIALS suite. The key feature of the new
NVECTOR module is that it is written in terms of abstract vector operations with
the actual vector kernels attached by a particular implementation (such as serial
or parallel). This allows writing the SUNDIALS solvers in a manner independent
of the actual NVECTOR vector implementation (which can be user-supplied), as
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CVODES: An ODE solver with sensitivity analysis capabilities · 3

well as allowing more than one NVECTOR module linked into an executable file.
This feature is essential in certain sensitivity analysis computations.

The rest of this paper is organized as follows. In Section 2, the algorithms im-
plemented in CVODES for ODE integration and forward and adjoint sensitivity
analysis are presented. The CVODES code organization and relationship to SUN-
DIALS is discussed in Section 3, while Section 4 gives a high-level overview of
the solver usage and general philosophy of the user interface. We conclude with
indications on software availability in Section 5 and with some final remarks and
directions of current and future development in Section 6.

2. ALGORITHMS

CVODES solves initial value problems for systems of ODEs. Such problems can be
stated as

ẏ = f(t, y) , y(t0) = y0 , (1)

where y ∈ RN and ẏ = dy/dt. That is, (1) represents a system of N ordinary
differential equations and their initial conditions at some t0. The dependent variable
is y and the independent variable is t. The independent variable need not appear
explicitly in the vector valued function f . The vector y will be referred to as
the vector of state variables, to distinguish it from sensitivity variables introduced
below.

Additionally, if (1) depends (through its right-hand side and/or its initial condi-
tions) on some parameters p ∈ RNp , i.e.,

ẏ = f(t, y, p) , y(t0) = y0(p) , (2)

CVODES can also compute first order derivative information, performing either for-

ward sensitivity analysis or adjoint sensitivity analysis. In the first case, CVODES
computes the sensitivities of the solution with respect to the parameters p, while in
the second case, CVODES computes the gradient of a derived function with respect
to the parameters p.

In the rest of this section we describe the algorithms implemented in CVODES,
with emphasis on sensitivity analysis. We give only a brief overview of the ODE
integration algorithm to introduce some of the quantities needed in the sequel.
Since CVODES shares the main integration engine with CVODE, the interested
reader is directed to [Hindmarsh et al. 2003].

2.1 ODE Integration

The IVP is solved by one of two numerical methods. These are the backward differ-
entiation formula (BDF) and the Adams-Moulton formula. Both are implemented
in a variable-stepsize, variable-order form. The BDF uses a fixed-leading-coefficient
form. These formulas can both be represented by a linear multistep formula

K1
∑

i=0

αn,iyn−i + hn

K2
∑

i=0

βn,iẏn−i = 0 (3)

where theN -vector yn is the computed approximation to y(tn), the exact solution of
(1) at tn. The stepsize is hn = tn− tn−1. The coefficients αn,i and βn,i are uniquely
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4 · R. Serban and A.C. Hindmarsh

determined by the particular integration formula, the history of the stepsize, and
the normalization αn,0 = −1. The Adams-Moulton formula is recommended for
nonstiff ODEs and is represented by (3) with K1 = 1 and K2 = q− 1. The order of
this formula is q and its values range from 1 through 12. For stiff ODEs, BDF should
be selected and is represented by (3) with K1 = q and K2 = 0. For BDF, the order
q may take on values from 1 through 5. In the case of either formula, the integration
begins with q = 1, and after that q varies automatically and dynamically.

For either BDF or the Adams formula, ẏn denotes f(tn, yn). That is, (3) is an
implicit formula, and the nonlinear equation

G(yn) ≡ yn − hnβn,0f(tn, yn)− an = 0

an =
∑

i>0

(αn,iyn−i + hnβn,iẏn−i)
(4)

must be solved for yn at each time step. For nonstiff problems, a functional (or
fixpoint) iteration is normally used which does not require the solution of a linear
system of equations. For stiff problems, a Newton iteration is used and for each it-
eration an underlying linear system must be solved. This linear system of equations
has the form

M [yn(m+1) − yn(m)] = −G(yn(m)) , (5)

where yn(m) is the mth approximation to yn, and M approximates ∂G/∂y:

M ≈ I − γJ, J =
∂f

∂y
, γ = hnβn,0 . (6)

At present, aside from a diagonal Jacobian approximation, the other options imple-
mented in CVODES for solving the linear systems (5) are: (a) a direct method with
dense treatment of the Jacobian, (b) a direct method with band treatment of the
Jacobian, and (c) an iterative method SPGMR (scaled, preconditioned GMRES)
[Brown and Hindmarsh 1989], which is a Krylov subspace method. In most cases,
performance of SPGMR is improved by user-supplied preconditioners. The user
may precondition the system on the left, on the right, on both the left and right, or
use no preconditioner. In most cases of interest to the CVODES user, the technique
of integration will involve BDF and the Newton method coupled with one of the
linear solver modules.

The integrator computes an estimate En of the local error at each time step and
strives to satisfy the following inequality

‖En‖WRMS < 1 ,

where ‖·‖WRMS is the weighted root-mean-square norm defined in terms of the user-
defined relative and absolute tolerances. Since these tolerances define the allowed
error per step, they should be chosen conservatively. Experience indicates that a
conservative choice yields a more economical solution than error tolerances that are
too large. The error control mechanism in CVODES varies the stepsize and order
in an attempt to take minimum number of steps while satisfying the local error
test.

CVODES also incorporates an algorithm for special treatment of quadratures
depending on the solution y of the (1) or (2). Evaluation of integrals of the form
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CVODES: An ODE solver with sensitivity analysis capabilities · 5

G =
∫ tf

t0
g(t, y, p)dt can be done efficiently using the underlying linear multistep

method interpolating polynomials by appending to (2) an additional ODE

φ̇ = g(t, y, p) , φ(t0) = 0 , (7)

in which case G = φ(tf ). In the context of an implicit ODE integrator, since the
right-hand side of (7) does not depend on φ, such equations need not participate
in the solution of the nonlinear system (4). CVODES allows the user to identify
these equations separately from those in (2) and provides the option of including
or excluding φ from the error control algorithm. The main reason for including
this option in CVODES was the need for efficient quadrature computation in the
context of adjoint sensitivity analysis (see Section 2.3).

A complete description of the CVODES integration algorithm, including the
nonlinear solver convergence, error control mechanism, and heuristics related to
stopping criteria and finite-difference parameter selection, is given in [Hindmarsh
et al. 2003].

2.2 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale models depend on var-
ious parameters, through the right-hand side vector and/or through the vector of
initial conditions, as in (2). In addition to numerically solving the ODEs, it may
be desirable to determine the sensitivity of the results with respect to the model
parameters. Such sensitivity information can be used to estimate which parameters
are most influential in affecting the behavior of the simulation or to evaluate opti-
mization gradients (in the setting of dynamic optimization, parameter estimation,
optimal control, etc.).

The solution sensitivity with respect to the model parameter pi is defined as the
vector si(t) = ∂y(t)/∂pi and satisfies the following forward sensitivity equations (or
in short sensitivity equations):

ṡi =
∂f

∂y
si +

∂f

∂pi

, si(t0) =
∂y0(p)

∂pi

, (8)

obtained by applying the chain rule of differentiation to the original ODEs (2).
When performing forward sensitivity analysis, CVODES carries out the time

integration of the combined system, (2) and (8), by viewing it as an ODE system of
sizeN(Ns+1), whereNs represents a subset of model parameters pi, with respect to
which sensitivities are desired (Ns ≤ Np). However, major efficiency improvements
can be obtained by taking advantage of the special form of the sensitivity equations
as linearizations of the original ODEs. In particular, for stiff systems, for which
CVODES employs a Newton iteration, the original ODE system and all sensitivity
systems share the same Jacobian matrix, and therefore the same iteration matrix
M in (6).

The sensitivity equations are solved with the same linear multistep formula that
was selected for the original ODEs and, if Newton iteration was selected, the same
linear solver is used in the correction phase for both state and sensitivity variables.
In addition, CVODES offers the option of including (full error control) or excluding
(partial error control) the sensitivity variables from the local error test.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.



6 · R. Serban and A.C. Hindmarsh

2.2.1 Forward sensitivity methods. In what follows we briefly describe three
methods that have been proposed for the solution of the combined ODE and sen-
sitivity system for the vector ŷ = [y, s1, . . . , sNs

]. Due to its inefficiency, especially
for large-scale problems, the first approach is not implemented in CVODES.

Staggered Direct. In this approach [Caracotsios and Stewart 1985], the nonlinear
system (4) is first solved and, once an acceptable numerical solution is obtained,
the sensitivity variables at the new step are found by directly solving (8) after the
BDF discretization is used to eliminate ṡi. Although the system matrix of the
above linear system is based on exactly the same information as the matrix M in
(6), it must be updated and factored at every step of the integration, in contrast
to M which is updated only ocasionally. The computational cost associated with
these matrix updates and factorizations makes this method unattractive when
compared with the methods described below and is therefore not implemented
in CVODES.

Simultaneous Corrector. In this method [Maly and Petzold 1997], the BDF dis-
cretization is applied simultaneously to both the original equations (2) and the
sensitivity systems (8) resulting in the following nonlinear system

Ĝ(ŷn) ≡ ŷn − hnβn,0f̂(tn, ŷn)− ân = 0 ,

where f̂ = [f(t, y, p), . . . , (∂f/∂y)(t, y, p)si + (∂f/∂pi)(t, y, p), . . .] and ân are the
terms in the BDF discretization that depend on the solution at previous inte-
gration steps. This combined nonlinear system can be solved as in (5) using a
modified Newton method by solving the corrector equation

M̂ [ŷn(m+1) − ŷn(m)] = −Ĝ(ŷn(m)) (9)

at each iteration, where

M̂ =















M
γJ1 M
γJ2 0 M
...

...
. . .

. . .

γJNs
0 . . . 0 M















,

M is defined as in (6), and Ji = (∂/∂y) [(∂f/∂y)si + (∂f/∂pi)]. It can be
shown that 2-step quadratic convergence can be attained by only using the block-
diagonal portion of M̂ in the corrector equation (9). This results in a decoupling
that allows the reuse of M without additional matrix factorizations. However,
the products (∂f/∂y)si as well as the vectors ∂f/∂pi must still be reevaluated
at each step of the iterative process (9) to update the sensitivity portions of the
residual Ĝ.

Staggered corrector. In this approach [Feehery et al. 1997], as in the staggered direct
method, the nonlinear system (4) is solved first using the Newton iteration (5).

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.



CVODES: An ODE solver with sensitivity analysis capabilities · 7

Then, a separate Newton iteration is used to solve the sensitivity system (8):

M [si,n(m+1) − si,n(m)] =

−

[

si,n(m) − γ

(

∂f

∂y
(tn, yn, p)si,n(m) +

∂f

∂pi

(tn, yn, p)

)

− ai,n

]

, (10)

where ai,n =
∑

j>0(αn,jsi,n−j + hnβn,j ṡi,n−j). In other words, a modified-
Newton iteration is used to solve a linear system. In this approach, the vectors
∂f/∂pi need be updated only once per integration step, after the state correction
phase (5) has converged. Note also that Jacobian-related data can be reused at
all iterations (10) to evaluate the products (∂f/∂y)si.

CVODES implements the simultaneous corrector method and two flavors of the
staggered corrector method which differ only if the sensitivity variables are included
in the error control test. In the full error control case, the first variant of the
staggered corrector method requires the convergence of the iterations (10) for all Ns

sensitivity sytems and then performs the error test on the sensitivity variables. The
second variant of the method will perform the error test for each sensitivity vector
si, (i = 1, 2, . . . , Ns) individually, as they pass the convergence test. Differences in
performance between the two variants may therefore be noticed whenever one of
the sensitivity vectors si fails a convergence or error test.

An important observation is that the staggered corrector method, combined with
the SPGMR linear solver, effectively results in a staggered direct method. Indeed,
SPGMR requires only the action of the matrix M on a vector and this can be
provided with the current Jacobian information. Therefore, the modified Newton
procedure (10) will theoretically converge after one iteration.

2.2.2 Selection of the absolute tolerances for sensitivity variables. If the sensi-
tivities are included in the error test, CVODES provides an automated estimation
of absolute tolerances for the sensitivity variables based on the absolute tolerance
for the corresponding state variable. The relative tolerance for sensitivity variables
is set to be the same as for the state variables. The selection of absolute toler-
ances for the sensitivity variables is based on the observation that the sensitivity
vector si will have units of [y]/[pi]. With this, the absolute tolerance for the j-th
component of the sensitivity vector si is set to atolj/|p̄i|, where atolj are the ab-
solute tolerances for the state variables and p̄ is a vector of scaling factors that are
dimensionally consistent with the model parameters p and give indication of their
order of magnitude. This choice of relative and absolute tolerances is equivalent
to requiring that the weighted root-mean-square norm of the sensitivity vector si

with weights based on si is the same as the weighted root-mean-square norm of the
vector of scaled sensitivities s̄i = |p̄i|si with weights based on the state variables
(the scaled sensitivities s̄i being dimensionally consistent with the state variables).
However, this choice of tolerances for the si may be a poor one, and the user of
CVODES can provide different values as an option.

2.2.3 Evaluation of the sensitivity right-hand side. There are several methods
for evaluating the right-hand side of the sensitivity systems (8): analytic evaluation,
automatic differentiation, complex-step approximation, and finite differences (or di-
rectional derivatives). CVODES provides all the software hooks for implementing

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.



8 · R. Serban and A.C. Hindmarsh

interfaces to automatic differentiation or complex-step approximation, and future
versions will provide these capabilities. At the present time, besides the option
for analytical sensitivity right-hand sides (user-provided), CVODES can evaluate
these quantities using various finite difference-based approximations to evaluate
the terms (∂f/∂y)si and (∂f/∂pi), or using directional derivatives to evaluate
[(∂f/∂y)si + (∂f/∂pi)]. As is typical for finite differences, the proper choice of
perturbations is a delicate matter. CVODES takes into account several problem-
related features: the relative ODE error tolerance rtol, the machine unit roundoff
U , the scale factor p̄i, and the weighted root-mean-square norm of the sensitivity
vector si.

Using central finite differences as an example, the two terms (∂f/∂y)si and
∂f/∂pi in the right-hand side of (8) can be evaluated separately:

∂f

∂y
si ≈

f(t, y + σysi, p)− f(t, y − σysi, p)

2σy

, (11)

∂f

∂pi

≈
f(t, y, p+ σiei)− f(t, y, p− σiei)

2σi

, (11’)

σi = |p̄i|
√

max(rtol, U) , σy =
1

max(1/σi, ‖si‖WRMS/|p̄i|)
,

simultaneously:

∂f

∂y
si +

∂f

∂pi

≈
f(t, y + σsi, p+ σei)− f(t, y − σsi, p− σei)

2σ
, (12)

σ = min(σi, σy) ,

or adaptively switching between (11)+(11’) and (12), depending on the relative size
of the estimated finite difference increments σi and σy.

2.3 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous section, obtaining
sensitivities with respect to Ns parameters is roughly equivalent to solving an ODE
system of size (1 +Ns)N . This can become prohibitively expensive, especially for
large-scale problems, if sensitivities with respect to many parameters are desired.
In this situation, the adjoint sensitivity method is a very attractive alternative,
provided that we do not need the solution sensitivities si, but rather the gradients
with respect to model parameters of a relatively few derived functionals of the
solution. In other words, if y(t) is the solution of (2), we wish to evaluate the
gradient dG/dp of

G(p) =

∫ tf

t0

g(t, y, p)dt , (13)

or, alternatively, the gradient dg/dp of the function g(t, x, p) at time tf. The function
g must be smooth enough that ∂g/∂y and ∂g/∂p exist and are bounded. In what
follows, we only provide the final results for the gradients of both G and g(tf). For
details on the derivation see [Cao et al. 2003]. The gradient of G with respect to p

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.



CVODES: An ODE solver with sensitivity analysis capabilities · 9

is simply

dG

dp
= λT (t0)s(t0) +

∫ tf

t0

(

∂g

∂p
+ λT ∂f

∂p

)

dt, (14)

where λ is solution of

λ̇ = −

(

∂f

∂y

)T

λ−

(

∂g

∂y

)T

, λ(tf) = 0 (15)

and s(t0) = dy0/dp. The gradient of g(tf, y, p) with respect to p can be then
obtained by using the Leibnitz differentiation rule. Indeed, from (13), (dg/dp)(tf) =
d/dtf(dG/dp) and therefore, taking into account that dG/dp in (14) depends on tf
both through the upper integration limit and through λ and that λ(tf) = 0,

dg

dp
(tf) =

∂g

∂p
(tf) + µT (t0)s(t0) +

∫ tf

t0

µT ∂f

∂p
dt , (16)

where µ is the sensitivity of λ with respect to the final integration limit and thus
satisfies the following equation, obtained by taking the total derivative with respect
to tf of (15):

µ̇ = −

(

∂f

∂y

)T

µ , µ(tf) =

(

∂g

∂y
(tf)

)T

. (17)

The final condition on µ(tf) follows from (∂λ/∂t)+(∂λ/∂tf) = 0 at tf, and therefore,
µ(tf) = −λ̇(tf).

The first thing to notice about the adjoint system (15) is that there is no explicit
specification of the parameters p; this implies that, once the solution λ is found,
the formula (14) can then be used to find the gradient of G with respect to any of
the parameters p. The same holds true for the system (17) and the formula (16) for
gradients of g(tf, y, p). The second important remark is that the adjoint systems
are terminal value problems which depend on the solution y(t) of the original IVP
(2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2) to CVODES during the backward integration
phase of (15) or (17). The approach adopted in CVODES, based on check-pointing

is described next.
During the backward integration, the evaluation of the right-hand side of the

adjoint system requires, at the current time, the states y which were computed in the
forward integration phase. Since CVODES implements variable-stepsize integration
formulas, it is unlikely that the states will be available at the desired time and
therefore some form of interpolation is needed. The CVODES implementation
being also variable-order, it is possible that during the forward integration phase
the order may be reduced as low as first order, which means that there may be
points in time where only y and ẏ are available. Therefore, CVODES employs a
cubic Hermite interpolation algorithm. However, especially for large-scale problems
and long integration intervals, the number and size of the vectors y and ẏ that would
need to be stored make this approach computationally intractable.

CVODES settles for a compromise between storage space and execution time
by implementing a so-called check-pointing scheme. At the cost of at most one
additional forward integration, this approach offers the best possible estimate of

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20Y.



10 · R. Serban and A.C. Hindmarsh

t0 t1 t2 t3 t f

k 3k 2k 1k 0

Forward pass

Backward pass

.  .  .  .

.  .  .

Fig. 1. Illustration of the check-pointing algorithm for generation of the forward solution during

the integration of the adjoint system.

memory requirements for adjoint sensitivity analysis. To begin with, based on the
problem size N and the available memory, the user decides on the number Nd of
data pairs (y, ẏ) that can be kept in memory for the purpose of interpolation. Then,
during the first forward integration stage, every Nd integration steps a check point
is formed by saving enough information (either in memory or on disk if needed) to
allow for a hot restart, that is, a restart that will exactly reproduce the forward
integration. In order to avoid storing Jacobian-related data at each check point,
a reevaluation of the iteration matrix is forced before each check point. At the
end of this stage, we are left with Nc check points, including one at t0. During
the backward integration stage, the adjoint variables are integrated from tf to t0
going from one check point to the previous one. The backward integration from
check point i + 1 to check point i is preceeded by a forward integration from i to
i + 1 during which Nd data pairs (y, ẏ) are generated and stored in memory for
interpolation. This procedure is illustrated in Fig. 1.

This approach transfers the uncertainty in the number of integration steps in
the forward integration phase to uncertainty in the final number of check points.
However, Nc is much smaller than the number of steps taken during the forward
integration, and there is no major penalty for writing and then reading check point
data to/from a temporary file. Note that, at the end of the first forward integration
stage, data pairs y-ẏ are available from the last check point to the end of the
integration interval. If no check points are necessary, i.e., Nd is larger than the
number of integration steps taken in the solution of (2), the total cost of an adjoint
sensitivity computation can be as low as one forward plus one backward integration.
In addition, CVODES provides the capability of reusing a set of check points for
multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (13).

Finally, we note that the adjoint sensitivity module in CVODES provides the
infrastructure to integrate backwards in time any ODE terminal value problem
dependent on the solution of the IVP (2), including adjoint systems (15) or (17), as
well as any other quadrature ODEs that may be needed in evaluating the integrals
in (14) or (16). In particular, for ODE systems arising from semi-discretization of
time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.
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SPGMR
ITERATIVE

CVSBANDPRE

CVSBBDPRE

BANDDENSE

CVODES

SUNDIALS

NVECTOR_SERIAL NVECTOR_PARALLEL

NVECTOR

CVODEACVODE KINSOL IDA

CVSDIAG CVSDENSE CVSBAND CVSSPGMR

Fig. 2. Overall structure diagram of the CVODES package. Modules specific to CVODES are
distinguished by rounded boxes, while generic solver and auxiliary modules are in square boxes.

3. CODE ORGANIZATION

As mentioned before, the SUNDIALS family of solvers consists of CVODE (for
ODE systems), KINSOL (for nonlinear algebraic systems), and IDA (for DAE sys-
tems). In addition, variants of these which also do sensitivity analysis calculations
are available (CVODES) or in development (IDAS and KINSOLS). The overall or-
ganization of the CVODES package, as well as its relationship to SUNDIALS, is
shown in Fig. 2. The basic elements of the structure are a module for the basic
integration algorithm (including forward sensitivity analysis), a module for adjoint
sensitivity analysis, and a set of modules for the solution of linear systems that
arise in the case of a stiff system.

The central integration module deals with the evaluation of integration coeffi-
cients, the functional or Newton iteration process, estimation of local error, selec-
tion of stepsize and order, and interpolation to user output points, among other
issues. Although this module contains logic for the basic Newton iteration algo-
rithm, it has no knowledge of the method being used to solve the linear systems
that arise. For any given user problem, one of the linear system modules is specified
and is then invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will
integrate the forward sensitivity equations, simultaneously with the original IVP.
The sensitivities variables may or may not be included in the local error control
mechanism of the main integrator. CVODES provides three different strategies of
dealing with the correction stage for the sensitivity variables, simultaneous corrector
and two variants of staggered corrector (see Section 2.2). The CVODES package
includes an algorithm for the approximation of the sensitivity equations right-hand
sides by difference quotients, but the user has the option of supplying these right-
hand sides directly.

The adjoint sensitivity module provides the infrastructure needed for the inte-
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gration backwards in time of any system of ODEs which depends on the solution of
the original IVP, in particular the adjoint system and any quadratures required in
evaluating the gradient of the objective functional. This module deals with the set-
up of the check points, interpolation of the forward solution during the backward
integration, and backward integration of the adjoint equations.

At present, the package includes the following four CVODES linear system mod-
ules: (a) CVSDENSE (LU factorization and backsolving with dense matrices), (b)
CVSBAND (LU factorization and backsolving with banded matrices), (c) CVS-
DIAG (an internally generated diagonal approximation to the Jacobian), and (d)
CVSSPGMR (scaled preconditioned GMRES method). This set of linear solver
modules is intended to be expanded in the future as new algorithms are developed.

In the case of the direct CVSDENSE and CVSBAND methods, the package in-
cludes an algorithm for the approximation of the Jacobian by difference quotients,
but the user also has the option of supplying the Jacobian (or an approximation to
it) directly. In the case of the iterative CVSSPGMR method, the package includes
and algorithm for the approximation by difference quotients of the product between
the Jacobian matrix and a vector of appropriate length. Again, the user has the
option of providing a routine for this operation. In the case of CVSPGMR, the
preconditioning must be supplied by the user in two phases: setup (preprocessing
of Jacobian data) and solve. While there is no default choice of preconditioner
analogous to the difference quotient approximation in the direct case, the refer-
ences [Brown and Hindmarsh 1989; Byrne 1992], together with the example and
demonstration programs included with CVODES, offer considerable assistance in
building preconditioners.

Each CVODES linear solver module consists of five routines devoted to: (1)
memory allocation and initialization, (2) setup of the matrix data involved, (3)
solution of the system, (4) solution of the system in the context of forward sensitivity
analysis, and (5) freeing of memory. The setup and solution phases are separate
because the evaluation of Jacobians and preconditioners is done only periodically
during the integration, as required to achieve convergence. The call list within
the central CVODES module to each of the five associated functions is fixed, thus
allowing the central module to be completely independent of the linear system
method.

These modules are also decomposed in another way. Each of the modules CVS-
DENSE, CVSBAND, and CVSSPGMR is a set of interface routines built on top of
a generic solver module, named DENSE, BAND, and SPGMR, respectively. The
interfaces deal with the use of these methods in the CVODES context, whereas
the generic solver is independent of the context. While the generic solvers here
were generated with SUNDIALS in mind, our intention is that they be usable in
other applications as general-purpose solvers. This separation also allows for any
generic solver to be replaced by an improved version, with no necessity to revise
the CVODES package elsewhere.

CVODES also provides two preconditioner modules. The first one, CVSBAND-
PRE, is intended to be used on serial computers and provides a banded difference
quotient Jacobian based preconditioner and solver routines for use with CVSPGMR.
The second preconditioner module, CVBBDPRE, developed for parallel comput-
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ers, generates a preconditioner that is a block-diagonal matrix with each block
being a band matrix. A detailed description of these two modules, including usage
guidelines, is given in [Hindmarsh et al. 2003].

All state information used by CVODES to solve a given problem is saved in a
structure, and a pointer to that structure is returned to the user. There is no
global data in the CVODES package, and so in this respect it is reentrant. State
information specific to the linear solver is saved in a separate structure, a pointer to
which resides in the CVODES memory structure. The reentrancy of CVODES was
motivated by the anticipated multicomputer extension but is also essential during
adjoint sensitivity analysis where the check-pointing algorithm leads to interleaved
forward and backward integration passes.

Figure 2 does not show any of the user-supplied routines for CVODES. At a min-
imum, the user must provide a routine for the evaluation of the ODE right-hand
side and, if performing adjoint sensitivity analysis, a routine for the evaluation of
the right-hand side of the adjoint system. Optional user-provided routines include,
depending on the options chosen, functions for Jacobian evaluation (direct cases)
or Jacobian-vector products (Krylov case), setup and solution of Krylov precondi-
tioners, a function providing the integrand of any additional quadrature equations,
and a routine for providing the right-hand side of the sensitivity equations (for
forward sensitivity analysis). Depending on the options selected for the solution of
the adjoint system, the user may have to provide corresponding Jacobian and/or
preconditioner routines.

One of the most important characteristics of the design of CVODES (shared by all
solvers across SUNDIALS) is the fact that it is implemented in a data-independent
manner, in that the solver does not need any information regarding the underlying
structure of the data on which it operates.

The CVODES solver acts on vectors through a generic NVECTORmodule, which
defines an NVECTOR structure specification, a data-independent NVECTOR type,
a set of abstract vector operations, and a set of wrappers for accessing the actual
vector operations of the implementation under which an NVECTOR was created.
Because details of vector operations are thus encapsulated within each specific
NVECTOR implementation, CVODES is thus independent of a specific implemen-
tation. This allows the solver to be precompiled as a binary library and allows
more than one NVECTOR implementation to be used within a single program.
This feature is essential for the efficient integration of quadrature variables (see
Section 2.1) as well as for adjoint sensitivity analysis when, for some problems, the
adjoint variables are more conveniently organized in a structure different from that
of the variables in the forward problem.

A particular NVECTOR implementation, such as the serial and parallel imple-
mentations included with SUNDIALS or a user-provided implementation, must
provide the following: (1) actual implementation of the routines for operations on
N-vectors, such as creation, destruction, summation, and dot product; (2) a routine
to construct an NVECTOR specification structure for this particular implementa-
tion, which defines the data necessary for constructing a new N-vector and attaches
the vector operations to the new structure; and (3) a destructor for the NVECTOR
specification structure.
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4. CVODES USAGE

In this section we give an overview of the usage of CVODES for ODE integration,
forward sensitivity analysis, and adjoint sensitivity analysis. Complete documen-
tation of the code usage is given in [Hindmarsh and Serban 2002].

One of the guiding principles in designing the user interface to the CVODES
solver has been to allow user to transit from just integration of ODEs to performing
sensitivity analysis in as rapid and seamless a manner as possible. To achieve this
goal, we have opted not to modify any of the CVODE user interface to account for
the initialization and set up of sensitivity analysis.

Instrumenting an existing user code for forward sensitivity analysis can thus be
done by only inserting a few calls to CVODES routines, additional to those required
for setting up and solving the original ODE (steps 7, 8, 10, and 12 below). We give
below the main steps required to set up, initialize, and solve an IVP ODE, and
optionally perform forward sensitivity analysis with respect to some of the model
parameters. This sequence of calls is the most natural one, but the order of some
of the steps below can be changed. For example, initialization and allocation for
forward sensitivity analysis could be performed before attaching and configuring
the linear solver module. Similarly, changing optional inputs to the solver (step 3)
could follow the memory allocation step 4.

(1) An implementation dependent NVECTOR specification constructor must first
be called. For the two NVECTOR implementation provided with SUNDIALS,
serial and MPI parallel, the constructor routines are NV SpecInit Serial and
NV SpecInit Parallel, respectively.

(2) CVodeCreate creates the solver object. The user must specify the linear mul-
tistep method to be used (Adams or BDF) and the nonlinear iteration type
(functional or Newton). Various options controlling the solver are set to their
default values.

(3) CVodeSet* routines can now be used to change various controls from their
default values. Choices and default values are given in Table I.

(4) CVodeMalloc must be called next to perform any required memory allocation,
after checking the initialized memory block for errors in the default or optional
inputs. At this step the user must specify the routine providing the ODE right-
hand side, the initial time and initial values, as well as the desired integration
tolerances.

(5) CVDense, CVBand, CVDiag, or CVSpgmr If Newton iteration was selected in step
(2), a linear solver is needed for solving the linear systems that arise during the
Newton iterations. A direct linear solver (dense, band, diagonal, or SPGMR)
must now be created and attached to the block of memory allocated for the
solver. Various options controlling the linear solver are set to their default
values.

(6) CVDenseSet*, CVBandSet*, or CVSpgmrSet* At this stage, the default values
in the linear solver memory block can be changed if so desired. Choices and
default values are given in Table I.

(7) CVodeSetSens* routines can be called to change from their default values the
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optional inputs that control the integration of the sensitivity systems (see Ta-
ble I).

(8) CVodeSensMalloc must be called if solution sensitivities are desired. This rou-
tine initializes and allocates memory for forward sensitivity calculations. At
this stage the user specifies the number of sensitivities to be computed, the
forward sensitvity method (simultaneous corrector or staggered corrector), the
model parameters, as well as the initial values for the sensitivity variables.

(9) CVode solves the problem. The solver routine is typically called in a loop over
the desired output times. The user can have the solver take internal steps
until it has reached the user-specified tout or return control to the user’s main
program after taking one successful step. Additionally, the user can direct the
solver to test tstop so that the integration never proceeds beyond this value.

(10) CVodeGetSens extracts the sensitivity solution vectors. If forward sensitivity
analysis had been enabled in step 8, solutions sensitivities are computed at
the same time as the ODE solution and are available to the user through this
routine.

(11) CVodeGet* Optional outputs and statistics for the main solver are available
through extraction functions. A complete list of the optional outputs from
CVODES is given in Table II.

(12) CVodeSensGet* Optional outputs and statistics related to the solution of the
sensitivity systems are available through additional extraction functions (see
Table II).

(13) CVDenseGet*, CVBandGet*, CVDiagGet* or CVSpgmrGet* Optional statistics
from the linear solver module can be obtained through some of the routines
given in Table II.

(14) CVodeFree and the vector specification destructor. To complete the process,
the user must make the appropriate calls to free memory that was allocated in
the previous steps (vector specification objects, solver memory block, and any
user data).

If there are any quadrature equations that must also be integrated, the user’s main
program must construct an additional NVECTOR specification object. Integra-
tion of the quadrature variables is activated and initialized through a call to the
CVODES routine CVodeQuadMalloc, which must specify the user-provided routine
for the evaluation of the quadrature integrands and the integration tolerances for
quadrature variables. As before, the user has the option of changing from their de-
fault values various quantities controlling the quadrature integration (see Table I).
All these calls must preceed any call to the main CVODES solver routine. After
a successful return from CVode, the quadrature variables are accessible through a
call to CVodeGetQuad, and solver statistics related to quadrature integration are
available through the routines listed in Table II.

Adjoint sensitivity analysis inherently affects to a much greater extent the user
interface, mainly due to the coupling between the forward and backward integration
phases. In designing the user interface to the adjoint sensitivity module in CVODES
we have strived to maintain the same “look and feel” as for that used for ODE and
forward sensitivity solution. The initialization and set-up of the forward phase
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Table I. Optional inputs for CVODES, CVSDENSE, CVSBAND, and CVSSPGMR

Optional input Routine name Default

CVODES solver

Data for right-hand side routine CVodeSetFdata NULL

Pointer to an error file CVodeSetErrFile NULL

Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12

Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500

Maximum no. of warnings for h < U CVodeSetMaxHnilWarns 10

Flag to activate stability limit detection CVodeSetStabLimDet FALSE

Initial step size CVodeSetInitStep estimated

Minimum absolute step size CVodeSetMinStep 0.0

Maximum absolute step size CVodeSetMaxStep ∞

Value of tstop CVodeSetStopTime ∞

Maximum no. of error test failures CVodeSetMaxErrTestFails 7

Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3

Maximum no. of convergence failures CVodeSetMaxConvFails 10

Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1

Error control on quadrature variables CVodeSetQuadErrCon FULL

Data for quadrature right-hand side routine CVodeSetQuadFdata NULL

Sensitivity right-hand side routine CVodeSetSensRhsFn internal DQ
Data for sensitivity right-hand side routine CVodeSetSensFdata NULL

Error control on sensitivity variables CVodeSetSensErrCon FULL
Control for difference quotient approximation CVodeSetSensRho 0.0

Vector of problem parameter scalings CVodeSetSensPbar NULL
Relative tolerance for sensitivity variables CVodeSetSensReltol estimated
Absolute tolerance for sensitivity variables CVodeSetSensAbstol estimated

CVSDENSE linear solver

Dense Jacobian routine CVDenseSetJacFn internal DQ
Data for Jacobian routine CVDenseSetJacData NULL

CVSBAND linear solver

Band Jacobian routine CVBandSetJacFn internal DQ

Data for Jacobian routine CVBandSetJacData NULL

CVSSPGMR linear solver

Type of Gram-Schmidt orthogonalization CVSpgmrSetGSType classical GS

Ratio between linear and nonlinear tolerances CVSpgmrSetDelt 0.05
Preconditioner setup routine CVSpgmrSetPrecSetupFn NULL
Preconditioner solve routine CVSpgmrSetPrecSolveFn NULL

Data for preconditioner routines CVSpgmrSetPrecData NULL
Jacobian times vector routine CVSpgmrSetJacTimesVecFn NULL

Data for Jacobian times vector routine CVSpgmrSetJacData NULL

is the same as above. Before calling the main solver for the forward integration,
the user must call the CVODES routine CVadjMalloc to initialize and allocate
memory for the structure holding the check-pointing and interpolation data. The
forward integration and check-point generation is done through a call to CVodeF,
a wrapper around the CVode routine in step 9 above. The initialization, set-up,
and solution of the adjoint problem is then done in the same way as for a regular
forward ODE integration but calling CVODES and linear solver wrapper routines
that have the names mentioned before with the suffix B attached. Some examples
of such CVODES routines are: CVodeCreateB, CVodeSpgmrB, CVodeMallocB, and
CVodeB.
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Table II. Principal optional outputs from CVODES. Additional optional statistics (not listed)

are available for the staggered corrector forward sensitivity method.

Optional output Routine name

Size of CVODES integer workspace CVodeGetIntWorkSpace

Size of CVODES real workspace CVodeGetRealWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup routine CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

Order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

No. of calls to quadrature r.h.s. function CVodeGetNumQuadRhsEvals

No. of quadrature local error test failures CVodeGetNumQuadErrTestFails

Error weight vector for quadrature variables CVodeGetQuadErrWeights

No. of calls to sensitivity r.h.s. function CVodeGetNumSensRhsEvals

No. of calls to r.h.s. function due to (11) or (12) CVodeGetNumRhsEvalsSens

No. of sensitivity local error test failures CVodeGetNumSensErrTestFails

No. of calls to linear solver setup for forward SA CVodeGetNumSensLinSolvSetups

Error weight vectors for sensitivity variables CVodeGetSensErrWeights

No. of nonlinear solver iterations for forward SA CVodeGetNumSensNonlinSolvIters

No. of sensitivity nonlinear convergence failures CVodeGetNumSensNonlinSolvConvFails

5. AVAILABILITY

The CVODES package has been released under a BSD open source license and is
freely available at the web site www.llnl.gov/CASC/sundials, or through the
DOE ACTS web site at acts.nersc.gov/sundials/main.html.

6. CONCLUSIONS

CVODES is the first in a series of new additions to SUNDIALS. The new codes,
IDAS and KINSOLS, together with CVODES, will provide sensitivity analysis for
all the classes of problems addressed by the basic SUNDIALS solvers. These new
capabilities extend the versatility and functionality of the SUNDIALS solvers in ad-
dressing new classes of applications, such as dynamically-constrained optimization,
inversion, and uncertainty quantification.

Like all of SUNDIALS, CVODES is under active development. An area of par-
ticular interest is in the automatic generation of the sensitivity equations. A parser
and code generator for the automatic generation of derivative approximations us-
ing the complex step method is underway. Automatic differentiation (AD) tools
will be incorporated as they become available; we are especially interested in adding
reverse AD capabilities to the SUNDIALS adjoint sensitivity solvers. Finally, to ad-
dress language interoperability issues and thus facilitate the use of the SUNDIALS
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solvers for users of other programming languages, we plan to generate Babel [Kohn
et al. 2001] wrappers for them.
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